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Abstract

We report on the development of a three-dimensional (3D) mesoscale lattice model of the diffusion of small gaseous penetrants in
heterogeneous polymers. The model has been applied to the problem of predicting diffusional impedances caused by crystalline regions in
semi-crystalline polymers. Increasing crystalline volume fraction and increasing crystal anisotropy both serve to reduce the diffusion
dramatically. Although the trends observed with two- and three-dimensional lattices are similar, absolute values of impedances are much
smaller in the case of the 3D lattice. The importance of using a 3D lattice when attempting quantitative prediction is therefore demonstrated.
Validation of the 3D model is presented in the form of a comparison between experimental and model predictions of impedance in
polyethylene. Crystals of different size, shape and crystalline volume fractions are used in the validation of the model.q 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Diffusion of small molecules through polymer mem-
branes is a process that has important consequences in
many technological industries, for example in the pro-
duction of packaging materials [1] and separation mem-
branes [2]. Throughout the last decade, simulation of this
process has been carried out, mainly through the use
of molecular dynamics on simplified models of bulk
amorphous polymers. The aim of these studies has been to
investigate the diffusion mechanism [3–6] and the effects of
temperature [7–9], linking diffusion to various calculations
of free volume [4,8,10–14] and more recently to predict
quantitative values [15,16].

Possibly due to the size- and time-scale restrictions that
are imposed by molecular dynamics few simulations have
been carried out on less idealistic polymers, for example
polymers with a significant amount of crystallinity, filled
polymers or polymer blends. A notable exception is due to
Müller-Plathe [17] who used a two-dimensional (2D) lattice
model to study the effects of crystalline volume fraction and
crystal shape on diffusion.

More than 50 years ago several analytical expressions for
diffusion in heterogeneous media were developed on the

basis of simple two-phase models [18]. These calculate
diffusion coefficients from a knowledge of the volume
fractions of the two phases and the diffusivities in each
phase. Their disadvantages stem from the simplifications
one has to make to derive such analytical equations.
Common simplifications include the necessity of the
dispersed phase to be regular shapes and that all components
of the dispersed phase must be the same shape and size.
Other analytical equations are only valid at very low
dispersed phase concentration. These simplifications are
serious drawbacks when attempting to predict quantitative
values for diffusion in realistic systems. Semi-crystalline
polymers, for example, rarely exhibit such uniformity in
shape and size of crystal.

The lattice model of penetrant diffusion [17] (which we
shall refer to simply asthe‘lattice model’) removes the need
for many of these over-simplifications. It can account for
different shapes of phases, different sizes of phases and can
work at any volume fraction. It is also readily extended to
the case of three or more phases, a feature that could be
exploited to model interfacial regions between the distinct
phases. Hence, this approach may provide a route to predict-
ing diffusion through heterogeneous media in cases where
the above simplifications are not valid, thereby bridging the
gap between the analytical theories and molecular dynamics
simulations.

In the current contribution we have studied the effect of
semi-crystallinity on diffusion using a 2D lattice of a
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mixture of permeable and completely impermeable regions.
The model is used to investigate the retarding effect that
crystals have on diffusion over a range of volume fractions
and anisotropies. We have then extended the ideas presented
by Müller-Plathe by developing the lattice model in three
dimensions, and we present a comparison between the two
types of lattice. Validation of the three dimensional model is
presented in the form of comparison with two distinct sets of
experimental data concerning diffusion in semi-crystalline
polyethylene (PE).

2. Simulation details

In this section, we provide details of the development of
the lattice algorithm to simulate diffusion through semi-
crystalline polymers over appropriate distances.

2.1. Calculation of diffusivity

The diffusion coefficient of a penetrant may be calculated
from a knowledge of the position of the penetrant over a
period of time. In isotropic media, the diffusion coefficient
can be calculated by the Einstein equation [19], i.e.
assuming a random walk:

D � kuR�t�2 R�0�u2l
2dt

�1�

whereR(0) andR(t) are the position vectors of the diffusing
particle at times 0 andt, respectively,D is the diffusivity of
the penetrant,d is the dimensionality of the system and the
angled brackets denote averaging over the whole ensemble.

Practically, this means that the diffusion coefficient is
readily obtainable from the gradient of penetrant mean-
squared-displacement against time. Care must be taken to

ensure that the length of the simulation is sufficient for
Einstein diffusion to take place since, at short time-scales
the mean-squared-displacement may not be linear with
time, but linear totn with n , 1: This so-called anomalous
diffusion is due to the motion of the penetrant being
restricted in some way so as to make it non-random [20,21].

2.2. The lattice model

2.2.1. Development of code to predict the retarding effects of
crystallinity

For the purposes of diffusion modelling, a semi-crystal-
line polymer is regarded as a heterogeneous system con-
sisting of permeable amorphous regions and impermeable
crystallites. The method for predicting the retarding effect of
the microcrystals closely resembles that used by Mu¨ller-
Plathe. Rather than constrain the simulations to two dimen-
sions however, we have extended the model to three so that
quantitative predictions become a realistic aim.

A Monte-Carlo algorithm produces a random walk on a
cubic lattice under 3D periodic boundary conditions. The
length of the lattice edge is 500 cells for the 2D work (giving
250 000 lattice sites) and 100 for investigations in three
dimensions (giving one million lattice sites). The reduction
in lattice-edge size in the 3D case is due to the restriction
that computer memory places on the size of the lattice.
Crystals are represented as impenetrable rectangles (2D)
and rectangular parallelepipeds (3D) that are placed and
orientated on the lattice to yield the desired crystalline
volume fraction.

For placing the crystals on the lattice, our aim was not to
mimic the mechanism of growth of crystals in any realistic
manner, but rather to produce an end result that represented
the final crystallinity well. Therefore, we employed a
packing algorithm that simply places a crystal at a random
position and random orientation on the lattice. If this move
results in overlap with another crystal then the new crystal is
deleted and a new attempt is made to place the crystal. This
routine is then repeated until the correct crystalline volume
fraction is reached. Figs. 1–4 show typical final (2D) lattices
using this algorithm.

Fig. 1 shows the lattice with a crystalline volume fraction
of 0.5 using crystals of dimensions 35× 1: The short-range
order between crystals arises due to the comparatively large
aspect ratio of these crystals; if two crystals are parallel,
with a spacing less than the long-edge of the crystal
dimension, then it is not possible for a crystal to be placed
between the two original crystals perpendicularly to those
two. The only acceptable orientation is parallel to the
crystals that are already placed. Thus, small regions of
high orientation occur with crystals of large aspect ratio.
Although this effect is not intentional on our part, it does
go someway to represent the usual stacking effect that is
observed in crystalline lamellae. Over large distances,
however, there is no preferred orientation. This orientation
over small distances will have some effect on the diffusion
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Fig. 1. Phase distribution on the lattice: 0.5 volume fraction, 1× 35 shape.



of the penetrant in that area since diffusion is only possible
parallel to the long axis of the crystal.

Fig. 2 shows a lattice with a much lower crystalline
volume fraction (0.1) but with crystals of the same shape.
Since there are fewer crystals, they are less constrained by
their neighbours (which are further away) and so the short-
range order is much less than at high volume fractions. Figs.
3 and 4 again show lattices at 0.5 and 0.1 crystalline volume
fractions, but in this case the crystals are of dimension 1× 5:
This smaller aspect ratio means that the short-range order is
much less, even at high crystalline volume fractions,
because the crystals are less effective at imposing an

orientation than crystals of larger aspect ratio. These types
of effects are also present in three dimensions.

At the beginning of each simulation, a starting point on
the lattice is chosen at random. If the chosen position
belongs to a crystalline region then a new random position
is chosen until a crystalline-free region is found. In order to
mimic the diffusional process, a direction in which to move
is chosen at random (from a total of six in three dimensions
and four in two dimensions). If the new position is free of
crystalline material the random walker is moved to the new
position. If the new position is blocked by a crystal,
however, the move will not be carried out but the time-
counter is still updated. The ‘random walker’ is moved in
this manner for 10 000 000 time-steps for the generation of
one set of positional data, which is then averaged over all
time origins to give the mean-squared-displacement of the
walker with time. Diffusion coefficients were calculated
from the gradient of mean-squared-displacement against
time (Eq. (1)). The final diffusion coefficient is based on
an average of 5 separate runs on each of 5 different grids,
thus averaging for position of crystallites on the grid and
starting position of the random walker. Hence, each
diffusion coefficient presented here is the average of 25
separate runs.

Using the above model, we have studied the effects of
semi-crystallinity on diffusion in both two and three
dimensions. Qualitative features we have looked at include
the effects of crystalline volume fraction and the shape of
the crystallites. In order to validate the model, work has
been carried out that directly compares predictions made
by the model and results found in the literature. The
literature data discuss both qualitative and quantitative
effects on diffusion of various crystalline shapes and
distributions in PE.

3. Results and discussion

3.1. Qualitative effects of crystallinity

3.1.1. Two-dimensional lattice
The widely used measure of the effect of crystallinity on

diffusion is ‘impedance’, i.e. the retarding effect of the
crystallites, defined as the ratio of the diffusion coefficients
of completely amorphous to semi-crystalline materials.
Table 1 shows impedance data determined from our lattice
model simulations. In the first instance, we considered
square crystallites one lattice cell in size and a range of
amorphous fractions.

As expected the impedance increases as more crystals are
added to the lattice. It has been suggested [22] that the
retarding nature of crystallites follows the empirical
relationship

D0

D
� V2n

a �2�
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Fig. 2. Phase distribution on the lattice: 0.1 volume fraction, 1× 35 shape.

Fig. 3. Phase distribution on the lattice: 0.5 volume fraction, 1× 5 shape.



whereD0=D is the impedance,Va is the amorphous volume
fraction andn is a constant exponent. We find that the data
in Table 1 can be fitted by Eq. (2) withn� 3:24 (correlation
coefficient of 0.97).

A similar investigation has been carried out for a variety
of crystal shapes, keeping the single crystallite area to a
constant size of 100 lattice sites. The results are shown in
Table 2 and Fig. 5. The values for the power-law exponentn
for the different aspect ratios of the crystals are given in
Table 3.

As the aspect ratio increases so does the effective retard-
ing power of the crystals. The trend ofn with crystalline
aspect ratio is well described by a logarithmic relationship
of the form (correlation coefficient 0.97):

n� ln�r�1 1 �3�

wherer is the crystal aspect ratio.
Thus for a given crystal size the following generalisations

can be made. Firstly, as aspect ratio increases, the power of
the crystal to stop diffusing molecules increases by virtue of
the increased distance that the penetrant must travel to pass
the crystal. Secondly, this rate of increase ofn decreases as
the aspect ratio increases as shown by the logarithmic trend.

Qualitatively these results agree well with those found
by Müller-Plathe, since both sets of work highlight the
increased retarding nature of crystals of higher anisotropy.
Quantitatively the comparison is less straightforward, since
Müller-Plathe’s work dealt with different shapes and sizes.

Nevertheless, some comparison is still possible in the case of
the square crystals and the effect of the side length. His work
showed that the value ofn increases as the size of crystal
decreases, i.e.n� 0:29 �300× 300�; n� 0:62 �100× 100�
and n� 0:94 �20× 20�: Our values ofn� 1:32 with a
crystal size of 10× 10; andn� 3:24 at 1× 1 appear to be
in agreement with this trend of increasingn with decreas-
ing crystal size. Combing the above results lead to the
following empirical equation for the effect of size of crystal
on the power-law exponentn with a correlation coefficient
of 0.98.

n� 3:3l20:4 �4�
wherel is the length of the edge of the square crystal. Thus,
in the case of square crystals, as the length of the side of the
crystal increases the retarding power decreases for a fixed
crystalline volume fraction.

3.1.2. Extension to three dimensions
Using our 3D version of the lattice model, we carried out

a similar range of simulations as above. The effects of cubic
crystals of size 1× 1 × 1 are shown in Table 4.

Again the retarding effect increases with crystalline
fraction, but the effect is less pronounced than in the 2D
case. The value of the exponentn is reduced to 2.20 (corre-
lation coefficient 0.99) compared to 3.24 in the 2D case.
This indicates merely that it is harder to stop a random
walker in three dimensions where there are six possible
directions for movement than in two dimensions where
there are only four available directions. More importantly,
it highlights the necessity of working in three dimensions
if quantitative values, rather than mere trends, are to be
predicted.

The effect of crystal shape in three dimensions was
studied by considering a range of surface area to volume
ratios, keeping the volume fixed at a size of 1000 lattice
sites. This condition allowed a total of nine different shapes.
The impedance data determined from our simulations are
shown in Table 5 and Fig. 6.

As the ratio,r, of surface area to volume increases, i.e. as
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Fig. 4. Phase distribution on the lattice: 0.1 volume fraction, 1× 5 shape.

Table 1
Impedance as a function of amorphous fraction for crystals of shape 1× 1
on a 2D lattice

Amorphous fraction 1.00 0.95 0.90 0.85 0.80 0.75 0.70
D0=D 1.00 0.95 1.24 1.39 1.82 2.25 3.01

Table 2
Impedance at a range of amorphous fraction and crystal shapes on a 2D
lattice

Amorphous fraction Crystal dimensions

100× 1 50× 2 25× 4 20× 5 10× 10

1.00 1.000 1.000 1.000 1.000 1.000
0.95 4.365 1.663 1.151 1.250 0.997
0.90 5.921 2.196 1.371 1.348 1.120
0.85 6.913 3.279 1.559 1.627 1.251
0.80 10.96 4.489 1.798 1.822 1.280
0.75 10.88 5.722 2.209 2.100 1.425
0.70 12.24 6.254 2.745 2.367 1.652
0.60 39.35 10.31 4.073 2.592 1.859



the crystals become less isotropic, the retarding effect of the
crystals increases. Again whilst the general trends are
similar to the trends seen with the 2D work, the quantitative
effects are much smaller here. In fact, a linear fit was found
to be more accurate than a power law fit. Furthermore,
analysis of our data suggests that we can factorise the effects
of crystalline volume fraction and shape: the impedance
increases linearly with volume fraction at constant shape,
and is also linear inr at constant volume fraction. In order to
satisfy the known boundary condition that as the amorphous
content tends to zero impedance tends towards infinity we
have included a�Va�21 term. Hence, we get

D0

D
� 1 1

ArVc

Va
�5�

whereVc is the crystalline volume fraction, i.e.Vc � 1 2
Va; r is the ratio of surface area to volume andA is a constant
given a fixed volume of crystal. The best fit gives a value of
A� 1:02 and a correlation coefficient between calculated
and actual impedance data of 0.96. It would appear that the
above equation is sufficient to describe the impedance effect
accurately, at least in the range of crystalline volume
fractions and crystal shapes studied here.

Finally we investigated the effect of a distribution of
crystal shapes within one ‘material’. We used the same
shapes as above and kept the crystal volumes at 1000 lattice
sites, but now chose an equal number of crystals of each

shape. The resulting data, given in Table 6, have been fitted
by a linear regression, yielding:

D0

D
� 1 1 1:466

Vc

Va
�6�

which has the same form as Eq. (5). We can hence equate

Ar � 1:466 �7�
SinceA is independent of crystal shape and volume fraction,
we can substitute the value ofA� 1:02 determined above
and hence we find a value ofr � 1:44: It appears that the
effective surface area to volume ratio of a distribution of
shapes lies somewhat above the mean value atr � 1:16: The
conclusion is that the less isotropic shapes play a more
dominant role than the more isotropic shapes at retarding
diffusion.

3.2. Quantitative validation

Although the previous work is useful for highlighting
general trends, it is of course the ultimate aim of modelling
to be able to predict quantitative values found in experi-
mental reality. Although the model described above has
several limitations, it was still thought useful to attempt
quantitative prediction. For a proper validation of our
model, we require experimentally determined diffusivities
for a small molecule through a semi-crystalline polymer and
the diffusivity in a purely amorphous sample of the same
polymer. A proper characterisation of the crystallinity in the
polymer is also needed, in the form of crystalline volume
fraction and shape and size of the crystals. Thus, the two
following sections report studies in which the model is used
to predict quantitative features of crystalline impedance
effects that can be compared to experimental data found
in the literature.

3.2.1. Quantitative validation 1
Michaels and Bixler [22] have investigated the diffusion
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Fig. 5. Impedance at a range of amorphous fraction and crystal shapes on a 2D lattice.

Table 3
Correlation ofn (as defined in Eq. (2)) with aspect ratio of crystal on a 2D
lattice

Crystal dimension Aspect ratio n

100× 1 100 5.45
50× 2 25 4.41
25× 4 6.25 2.76
20× 5 4 1.89
10× 10 1 1.32



of small gases through various samples of PE that contain
varying crystalline fraction and crystal shape. They
proposed that two impedance factors operate together to
reduce the diffusion coefficients in semi-crystalline PE and
proposed an expression:

D � Dp

tb
�8�

where Dp is the diffusion coefficient in a hypothetical
completely amorphous PE andt is a geometric impedance
factor accounting for the reduction in diffusion due to the
necessity of penetrants having to diffuse around crystallites.
b is a chain immobilisation factor which takes into account
the reduction in amorphous chain segment mobility due to
the proximity of the crystallites. Our model addressest, the
geometric impedance factor but does not account forb .
Fortunately, Michaels and Bixler devised a technique to
separate impedance into these two terms and so it is possible
for us to validate our model against their data fort. For small
penetrants we have assumed the effects of the reduction in
chain segment mobility is likely to be small.

The crystallites in PE are thought to be lamellae and
chain-folded [23]. The lamellae are 70–150 A˚ in thickness
with the other dimensions possibly extending into the
micron range. During cooling from the melt, stacks of
crystalline lamellae interleaved with amorphous layers
form. In addition, a secondary structure, the so-called
spherulite, is formed as the lamellae grow radially outward
from nucleation centres. Experimental evidence [24]
suggests that the basic impenetrable unit within PE is the
lamella and not the spherulite. The model at present ignores
any effects that the spherulitic structure might have on the
diffusion, though it is envisaged this could be included in the

model in future as the seemingly inexorable increase in
computing power allows lattices of larger size and higher
resolution.

The types of crystallinity in PE that Michaels and Bixler
used are shown in Table 7, where the crystals were of shape
a × a × b and the lamella crystal thicknessb� 1: The crys-
talline volume fractions were measured using density
measurements made in density gradient columns. The crys-
tal aspect ratios were determined by fitting Fricke’s equation
(Eq. (9)) to diffusional impedance data for each of the poly-
mers. Although it would be preferable to compare the lattice
model with experimental data directly, in this case, we are
actually comparing the lattice model to the predictions made
by the Fricke analysis.

For this study the number of grids was increased to 10 and
the number of diffusion runs on each grid was also increased
to 10. The linear lattice dimension was increased to 150,
giving 3 375 000 lattice sites. Despite this increase in size,
it was not always possible to represent the crystal-
amorphous microstructure at the correct proportion. For
example, in the case of Hydropol where the ratio of lateral
size to thickness isa=b� 8; the crystal representation was
of size 1× 8 × 8: Thus one lattice length corresponds to
approximately 100 A˚ , and the minimum spacing between
crystallites is therefore also 100 A˚ . It would be preferable
to scale the size of the crystals up to 4× 32× 32 which
would represent accurately not only the shape of the crystal
but also its size in relation to the inter-crystal spacing which
is approximately a quarter of the width of a crystal. On a
lattice of size 100 this is just possible in the case of
Hydropol, but it is not possible for the Alathan and Grex
polymers, since scaling their crystals gives crystals of length
98 and 140. Clearly this is something that could be easily
achieved with greater computing power, but it is hoped that
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Table 4
Impedance as a function of amorphous fraction for crystals of shape 1× 1 × 1 on a 3D lattice

Amorphous fraction 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50
D0=D 1.00 1.08 1.13 1.28 1.45 1.56 1.94 2.27 2.59 3.11 5.17

Table 5
Impedance at a range of amorphous volume fraction and anisotropies on a 3D lattice

Crystal shape
10× 10× 10 10× 20× 5 5× 8 × 25 4× 10× 25 4× 5 × 50 2× 20× 25 2× 10× 50 1× 40× 25 1× 20× 50

Surface area:volume
Va 0.6 0.7 0.73 0.78 0.94 1.18 1.24 2.13 2.14
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.95 1.02 1.07 1.02 1.04 1.03 1.09 1.10 1.29 1.22
0.90 1.06 1.06 1.09 1.10 1.09 1.18 1.20 1.43 1.48
0.85 1.11 1.16 1.12 1.18 1.13 1.25 1.31 1.67 1.70
0.80 1.15 1.19 1.19 1.20 1.18 1.36 1.46 1.78 1.80
0.75 1.18 1.27 1.24 1.27 1.28 1.52 1.53 1.94 1.90
0.70 1.29 1.32 1.32 1.39 1.43 1.53 1.63 2.12 2.04
0.65 1.32 1.36 1.39 1.46 1.45 1.66 1.74 2.14 2.24
0.60 1.44 1.46 1.44 1.48 1.58 1.77 1.83 2.33 2.26



we may still arrive at reasonable values using just the shape
of the crystals. In the cases of high crystalline content and
high anisotropy, it was not always possible to pack the
crystals onto the lattice using a random position and
orientation. In these cases a trend was produced that encom-
passed the data where it was possible to fit the crystals on the
lattice.

In order to fit our data to an analytical equation, we
employ a much-used relationship originally suggested by
Fricke [25]

I � x 1 �1 2 Va�
xVa

�9�

where I is the diffusional impedance,x is an anisotropy
parameter andVa is the amorphous volume fraction.

This equation was derived originally for the prediction of
electrical conductivity for disperse systems containing a
spheroidal second phase. The parameterx is a function of
the shape of the spheroids which is large for isotropic
crystals and vice versa. It is used as a fitting parameter in
subsequent work. Naturally, there is some concern regard-
ing using such fits to extend the relationship beyond the
boundaries of the data which was used to produce the fit.
Indeed, it should soon be possible to design a sufficiently
large lattice to allow any shape and size crystal distribution
within the constraints of computer memory. For now,
simple empirical extension of our data must suffice. It
should be noted that the Fricke equation is very similar in
form to the empirical relationship that was derived in an
earlier section (Eq. (5)). The empirical equation uses a
simpler measure of shape—namely the aspect ratio.
However, the empirical equation is obtained from only a

small amount of data (small volume fraction range and no
account of changes in crystal size is accounted for) and is
thus not ideal.

Fig. 7 shows an example of a Fricke fit to the diffusional
data from our model and also the extension of that fit to the
realistic crystalline volume fraction. The data used in the
example relate to the polymer Grex and the correlation
coefficient between data and the Fricke fit is 0.99. Using
the Fricke relationship, the predicted values for the
impedance effect of the different types and volume fractions
of crystals (shown in Table 8) are within 20% of the experi-
mental values, though some values are much better than
that.

In the case of Hydropol it was possible to model the
microstructure at the correct ratio of crystal amorphous
layers, as well as correct shape thus removing the need for
fitting and extrapolation. A range of sizes was investigated
starting from the size used in the original work above and
increasing to the correct size. The data in Table 9 show that
increasing the size of the crystal decreases the retarding
effect to a figure that is in excellent agreement with the
experimental value of 1.43. This indicates that in order to
obtain quantitative values of impedance it is necessary to
use the correct size of crystal as well as the correct shape.
Using the current lattice it was impossible to model the
crystals of the other polymers at the correct size and this
is one way in which the model could be improved in the
future.

3.2.2. Quantitative validation 2
A second set of experimental data for comparison with

the model has been taken from the PhD thesis [26] of Dr
Sally Harding from the Department of Chemical Engineer-
ing at Cambridge University. The data were obtained by
means of the pulsed gradient spin echo (PGSE) NMR
method [27]. This technique extends the range of diffusiv-
ities that can be measured to values that are significantly
lower than can be detected by other methods. Harding
measured the diffusivity of benzene in samples of PE with
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Fig. 6. Impedance at a range of amorphous volume fraction and anisotropies on a 3D lattice.

Table 6
Impedance as a function of amorphous fraction with a distribution of crystal
shapes on a 3D lattice

Va 1.00 0.96 0.91 0.87 0.82 0.78 0.73 0.69 0.62
D0=D 1.00 1.07 1.19 1.29 1.41 1.52 1.62 1.68 1.82



differing amounts of crystallinity. The crystallites were
assumed to have an aspect ratio of 4× 100× 100: This is
in accordance with the results reported by Hedenqvist et al.
[28] who, in a study of the morphology of a range of semi-
crystalline PE samples, derived the lamellar thickness from
differential scanning calorimetry measurements and the
lateral extent of the lamellae from transmission electron
microscopy. As in the previous example, it is assumed
that the basic impenetrable unit within PE is the lamella
and not the spherulite. The three samples of PE have
amorphous volume fractions of 27, 49 and 67%. The
diffusion coefficient of benzene in a purely amorphous
sample of PE was not measured, so this value was taken
from the average of literature values�4:5 × 10211 m2 s21�:
The above value is used, along with the experimental data of
Harding, to calculate diffusional impedances, and these data
are shown in Table 10.

We have used our three-dimensional implementation of
the lattice diffusion model to estimate the impedance in the
semi-crystalline samples described above. As in the
previous case, it was difficult to use the correct size of
crystal in three dimensions due to the size restrictions
imposed by the lattice size. Nevertheless it was possible
to use crystals of size 3× 75× 75 and so this size was
used for the simulations. For the cases of 68 and 49%
amorphous volume fraction, it was possible to obtain direct
values from the model. However, is was not possible to
create a lattice of 27% amorphous volume and a Fricke fit
was used to extend the trend to this case.

Impedance data from the lattice model at a range of
crystalline volume fractions are shown in Table 11,

alongside the impedance values from experiment and
impedance values calculated using a 2D lattice for compari-
son. In the case of 27% amorphous volume fraction the
Fricke fit gave a correlation coefficient of 0.99. The 2D
lattice results in impedances that are too great, giving an
average error of 70% compared to the impedance data that
used a literature value for the diffusion in the pure
amorphous polymer. This level of error is greatly improved
upon by using the three-dimensional lattice, which gave
errors of 3 and 9% for the cases of 27 and 49% amorphous
volume fraction, respectively. In the case of an amorphous
volume fraction of 68% the error is larger at 36%, though
this is still more than twice as accurate as the value
predicted by the two dimensional lattice. The literature
value of diffusion in the purely amorphous polymer that
was used in the calculation of experimental impedances is
an average value. The predictions made in the cases of 27
and 49% amorphous volume fraction are well within the
spread of impedances if different literature values are
used. The prediction at 68% amorphous volume fraction
remains somewhat too high.

Finally, we note that increasing the crystallite size from
1 × 25× 25 to 2× 50× 50 and then to 3× 75× 75 resulted
in a small decrease in the impedance values predicted by the
model. This finite size-effect was also observed in the first
quantitative validation and in the case of square crystals by
Müller-Plathe. The decrease in impedance values translates
to an improvement in the agreement between the model and
experimental data. It can hence be expected that a

P.M. Hadgett et al. / Polymer 41 (2000) 6151–61606158

Table 7
Amorphous volume fractions and crystal shape for three polyethylenes

Polymer Va a=b

Grex 0.23 35
Alathon 0.57 23
Hydropol 0.71 8

Fig. 7. Fricke fit to impedance data for the polymer Grex on a 3D lattice.

Table 8
Experimental impedance values of the crystals in three polymers along with
simulation results

t (experimental) t (fixed size)

Grex 6.4 7.09
Alathon 3.2 2.49
Hydropol 1.43 1.77



simulation run at the correct size of 4× 100× 100 should
result in further improvement.

4. Conclusions

We have extended a lattice model first used by Mu¨ller-
Plathe to three dimensions. Using such a model, diffusion in
semi-crystalline polymers has been investigated both
qualitatively and quantitatively. In order to represent
semi-crystalline media the second phase (the crystal) is
modelled by an impenetrable object.

The retarding effects of crystals have been investigated in
both two and three dimensions. We have shown that high
content of crystallinity and high anisotropy of crystals both
serve to increase the impedance. This effect is much less
pronounced in three dimensions than in two since it is easier
to prevent the motion of the random-walker when it only has
four possible directions (in two dimensions) compared to
when it has six possible directions in which to move
(three dimensions). Predictions of quantitative values of
impedance have been made for several cases of poly-
ethylene. Using the correct shape of crystal (but not the
correct size in relation to the mean inter-crystal spacing
because of the restrictions of the lattice size), generally
produces values that are within̂20% of the experimental
value. In cases of high anisotropy, it was not possible to
place the crystals at random at the correct volume fraction
and the impedance had to be calculated from extrapolation
from lower crystalline volume fractions. In these cases, a fit
of the form suggested by Fricke appears to work well. In the
case where it was possible to model the inter-crystal spacing
accurately excellent agreement with experiment has been
achieved. Using this simple model, the retarding effects of
crystallinity on diffusion can be simulated rather well.

It would be possible to refine the ‘semi-crystalline’ model
further. A larger lattice would allow accurate inter-crystal
spacing even for the highly anisotropic crystals and would

also allow crystals of even greater anisotropy to be used,
thus circumventing the need for any extrapolation or
empiricism. One method by which this could be achieved
is to change the way in which the lattice is stored internally;
rather than store the whole lattice explicitly, simply storing
the corners of the crystals would dramatically reduce the
amount of memory that is needed. Although the effects of
spherulites have been assumed to be small, an increased
resolution and size of lattice would be able to test this
hypothesis.

The second obvious enhancement would be to alter the
random manner in which crystals are placed on the lattice. A
more realistic microstructure, in the form of stacks of
crystalline and amorphous layers, and higher crystalline
volume fractions, should be possible with an improved
crystal-placing algorithm. It should also be possible to
impose a distribution of crystal sizes that more accurately
reflects that found in reality given sufficient experimental
data. Finally, it may be possible to generate sufficient data to
allow the calculation of an empirical equation encompass-
ing size, shape and volume fraction simultaneously, there-
fore dispensing with the need to carry out explicit
simulations at all.

Alongside the improvements to the model that are
mentioned above, there are several possibilities for future
work by extending the applicability of the model. Firstly, it
may be possible to include a third region representing the
interface between crystal and amorphous regions. If the
diffusion characteristics of penetrants in this third region
can be determined, perhaps through the use of molecular
dynamics simulations, then it would be possible to have a
more realistic model of the semi-crystalline polymer.
Recent work has shown the diffusion in clay–polymer
nanocomposites also to be a promising area of study for
this model.
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